

Biomethanisation - opportunities for anaerobic digestion

Panagiotis Kougias

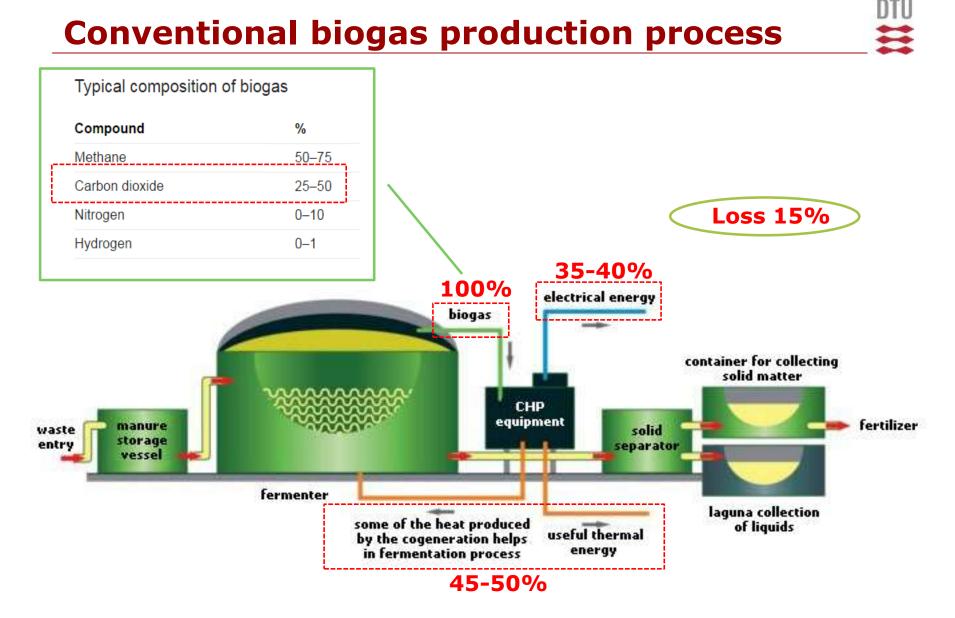
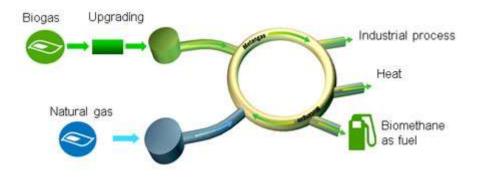
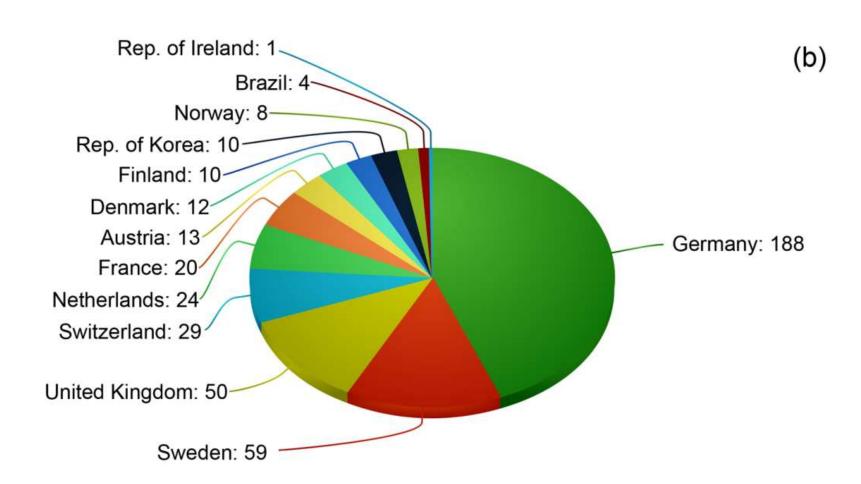


Figure obtained by http://www.bteam-energy.ro/en/information/biogas (last access 07/09/2017)

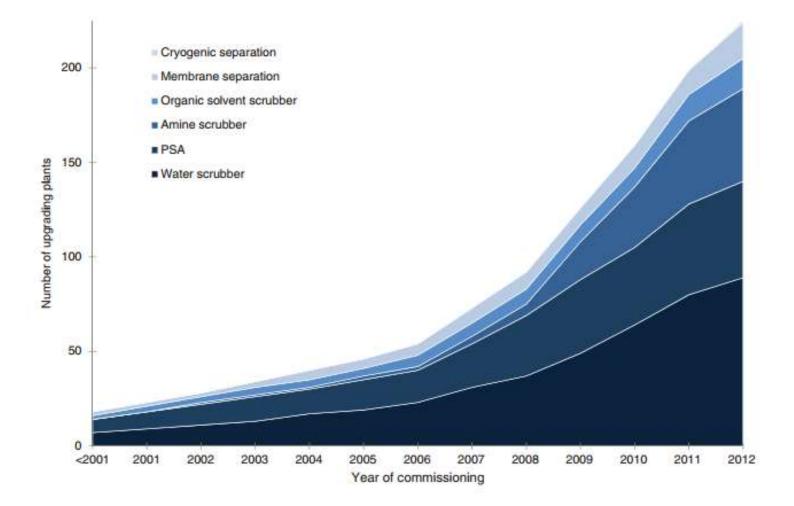

Biogas upgrading

"The process in which the final output gas consists of higher methane concentration compared to raw biogas, mainly due to removal or transformation of carbon dioxide"


Applications?

Can be used as a **substitute for transport fuels**, to produce **combined heat and power** (CHP), **heat alone** or serve as **feedstock for the chemical sector**. It can be transported and stored in the facilities and infrastructure available for natural gas.

Source: IEA Bioenergy 2014, Joint Study by IEA Bioenergy Task 40 and Task 37

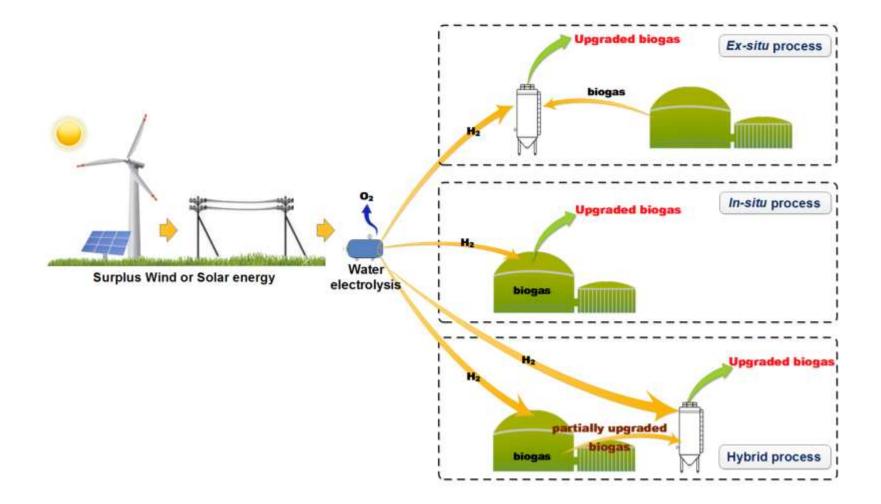

Biogas upgrading

IEA Bioenergy Task 37 as reported in Hoyer et al. (2016) and European Biogas Association Hoyer, K., Hulteberg, C., Svensson, M., Jernberg, J., Nørregard, Ø., 2016. Biogas Upgrading – Technical Review. ISBN: 978-91-7673-275-5.

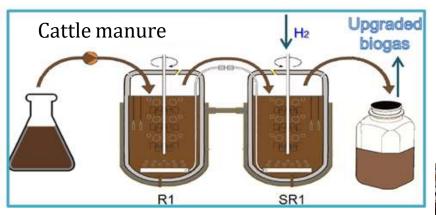
Biogas upgrading

Source: Bauer, F., Persson, T., Hulteberg, C., & Tamm, D. (2013). Biogas upgrading-technology overview, comparison and perspectives for the future. *Biofuels, Bioproducts and Biorefining*, 7(5), 499-511.

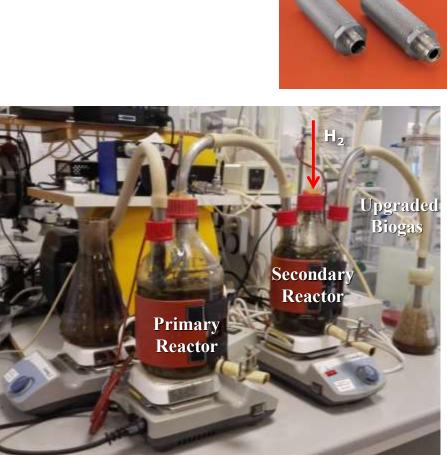
Parameter	Water scrubber	PSA	Membrane (2-4 stages)	Chemical scrubber (amine)	Organic physical scrubber
CH ₄ in product gas	96 - 98 %	96 - 98 %	96 - 98 %	96 - 99 %	96 - 98 %
Availability	95 - 98%	95 - 98 %	95 - 98%	95 - 98%	95 - 98 %
Annual maintenance cost (% of investment cost)	2 - 3%	2 – 3 %	3 – 4 %	2 – 3 %	2 – 3 %
H ₂ S removal	Yes	External	External	External/Yes	External
H ₂ O removal	External	Yes	Yes	External	External
N ₂ and O ₂ separation	No	No/partly	Partly (O ₂)	No	No
Electricity consumption (product gas > 4 bar(g)) (kWh/Nm ³ raw biogas)	0.2 - 0.3	0.2 - 0.3	0.2 - 0.3	0.10 - 0.15	0.2 - 0.3
Heat (kWh/Nm ³ raw biogas)	None	None	None	0.5 – 0.6	Internal
Pure CO ₂	No	Yes	Yes	Yes	No


Source: Bauer F, Persson T, Hulteberg C, Tamm D (2013) Biogas upgrading – Review of commercial technologies. Swedisch Gas Technology Centre (SGC), Malmö

Surplus Energy/Energy Storage?



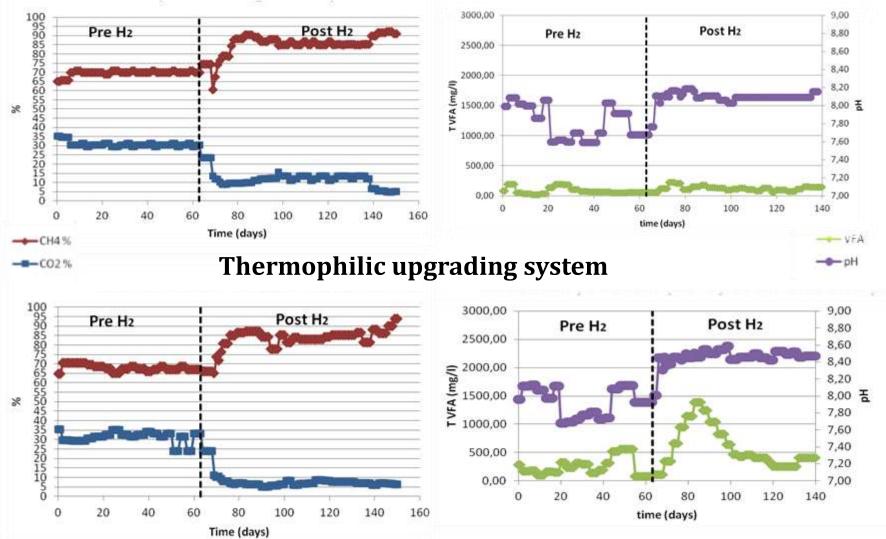
Biological biogas upgrading



Example 1: Serial configuration

Reactor	Working volume (L)	Temp. (°C)	HRT (days)
R1	1.5	35±1	25
SR1	2.0	35±1	33
R2	1.5	55±1	15
SR2	2.0	55±1	20

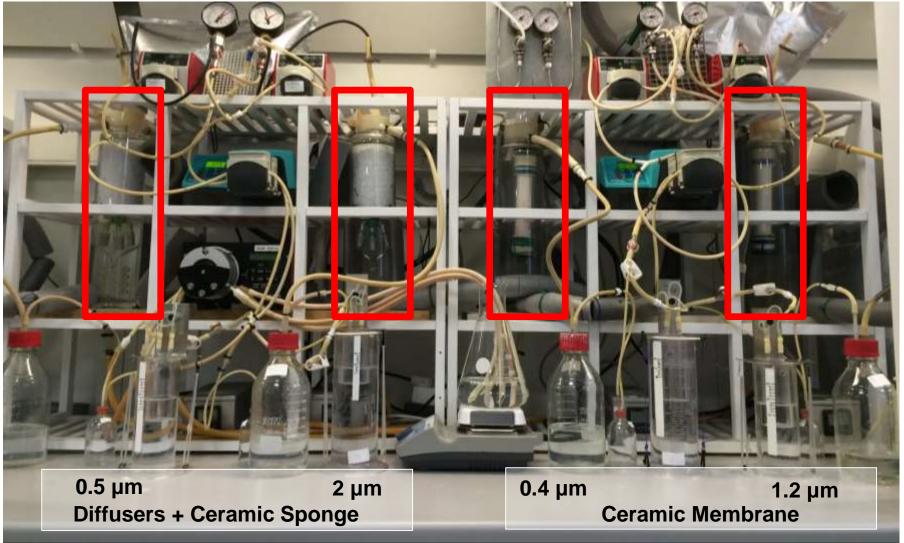
Technical challenge: limitations in injection of H₂ using metal diffusers



Bassani *et al 2015 Environ. Sci. Technol.*

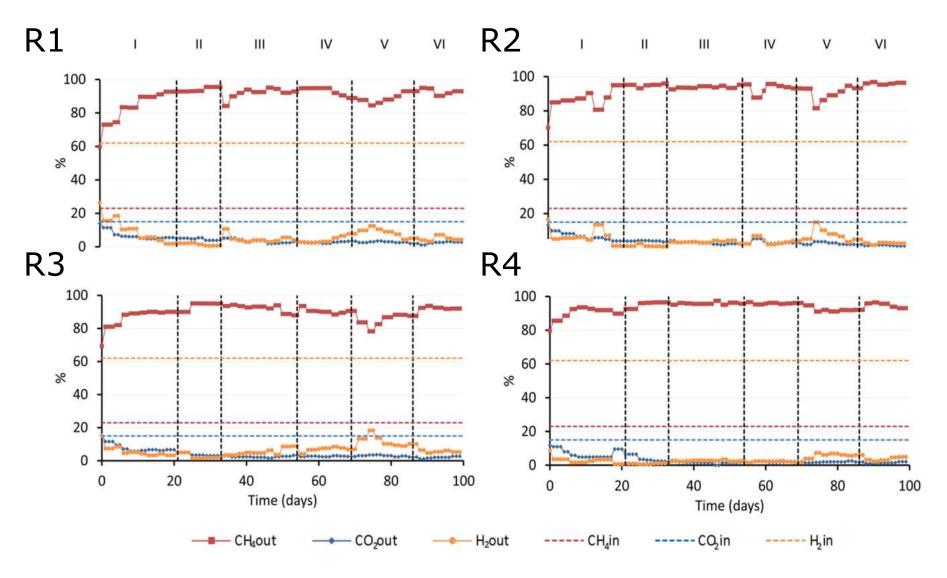
Example 1: Serial configuration

Mesophilic upgrading system


Bassani *et al 2015* Environ. Sci. Technol.

DTU Environment, Technical University of Denmark

Example 2: Ex-situ biogas upgrade

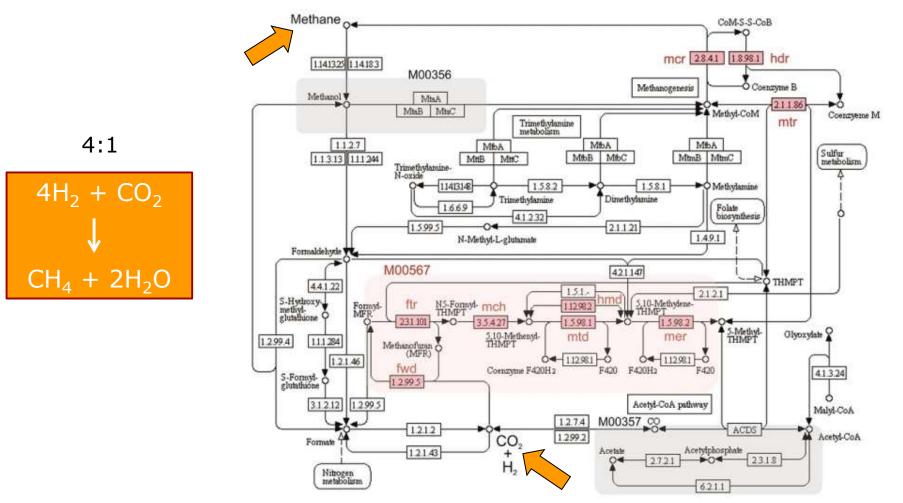

62% H₂ - 23% CH₄ - 15% CO₂

11 DTU Environment, Technical University of Denmark

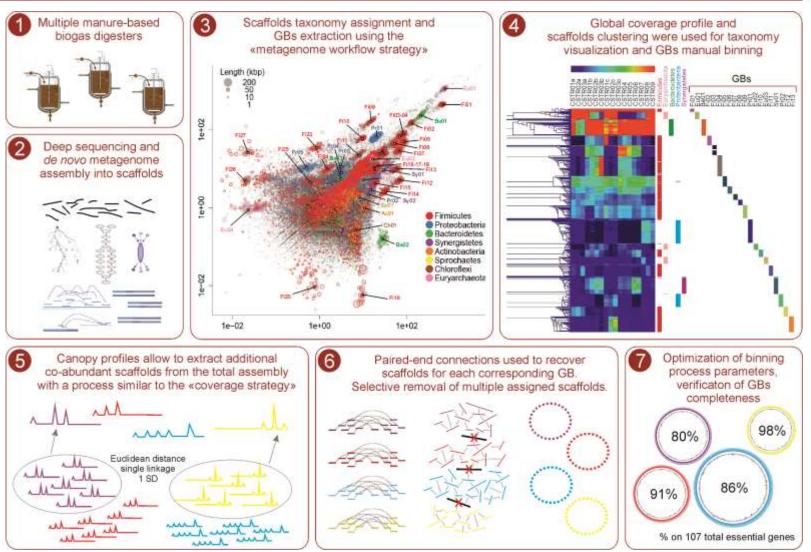
Bassani *et al 2017 Bioresour. Technol.*

Example 2: Ex-situ biogas upgrade

12 DTU Environment, Technical University of Denmark


Bassani *et al 2017 Bioresour. Technol.*

nti


Biological biogas upgrading

In upgrading anaerobic digestion system the injected exogenous H_2 is coupled with CO_2 and converted into CH_4 by the action of **hydrogenotrophic methanogens**

Metagenomic approach: binning

biogasmicrobiome.com

Campanaro et al. 2016 Biotechnol. Biofuels

Microbial upgrading taxonomy

Comparison of high-resolution microbial trees with **phylogeny and putative taxonomy**, obtained using 400 broadly conserved proteins with PhyloPhlAn software.

> On the right the **106** Population Genomes (PGs) identified in standard thermophilic anaerobic digesters.

> > On the left the **236** PGs binned from mesophilic and thermophilic **biogas upgrading** reactors.

biogasmicrobiome.com

Firmicute

Treu *et al. 2016 Bioresour. Technol.*

Microbial upgrading taxonomy

Some taxa were found independently from reactors operational conditions, for example several **recurrent phylotypes** are:

Methanoculleus, Methanothermobacter, Synthrophomonas and Proteobacteria.

	Cor microb		Thermo react	-	Upgrading reactors			
Taxon	GBs	%	GBs	%	GBs	%		
Firmicutes	56	36%	13	8%	85	55%		
Syntrophomonadaceae	24	50%	0	0%	24	50%		
Bacteroidetes	5	17%	1	3%	24	80%		
Proteobacteria	4	14%	6	21%	19	66%		
Synergistetes	3	30%	3	30%	4	40%		
Spirochaetes	1	13%	1	13%	6	75%		
Actinobacteria	0	0%	1	17%	5	83%		
Chloroflexi	0	0%	0	0%	6	100%		
Euryarchaeota	4	67%	1	17%	1	17%		
Tenericutes (Firmicutes)	3	50%	1	17%	2	33%		
Verrucomicrobia	0	0%	0	0%	3	100%		
Thermotogae	1	50%	1	50%	0	0%		
Fibrobactere	0	0%	0	0%	1	100%		
Acidobacteria	0	0%	0	0%	1	100%		
Chlamydiae	0	0%	0	0%	1	100%		
Planctomycetes	0	0%	0	0%	1	100%		
TM7	0	0%	1	100%	0	0%		

Composition of archaeal community was found to be **resilient**, while bacterial community was more **diverse** due to higher functional variability.

16 DTU Environment, Technical University of Denmark

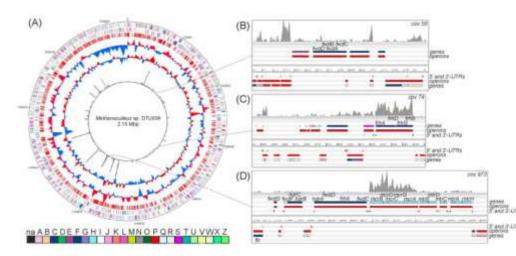
Treu L. *et al.* 2016 *Bioresour. Technol.*

Microbial upgrading populations

Mesophilic community

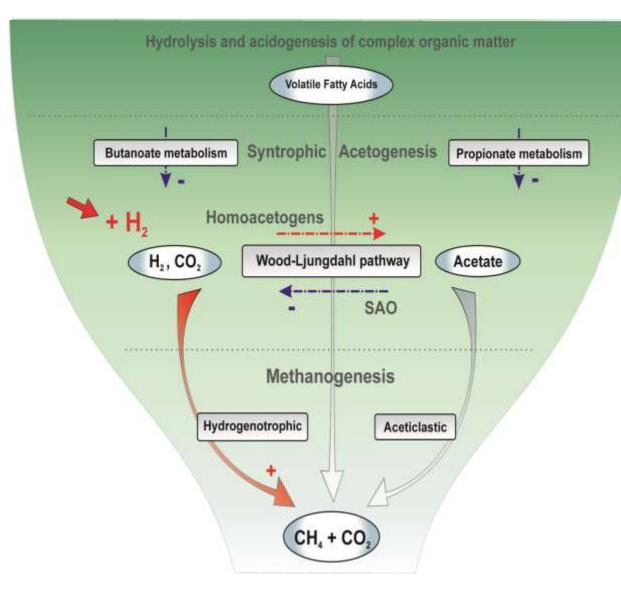
Thermophilic community

Prote	obact	eria	7	eneri	cutes,	- (motog lobact		Prote	ochac	teria	Te	eneric	utes	(notogae. Iobacteri
0	0	0	۲	0	۲		0	0	0	O	0	0	0	(\bigcirc)			0	0			-	1.1				.)		0		(.)
103	248	255	041	260	169	123	261	254	257	251	168	164	247	170		103	248	255	041	260	169	123	261	254	257	251	168	164	247	170 /
	0	0.5		0	0	0	1 -			(8)	0	ē	0	+								1 -	0				0	•	•	0
121	042	266	265	262	264	263	043	044	173	045	120	172	119	111		121	042	266	265	262	264	263	043	044	173	045	120	172	119	111
0	6	0	0	0	0	1		8				0	â	0		1.	0	*		0		0	•						e	
21	225	216	148	220	218	061	067	094	237	186	130	131	132	133	1	215	225	216	148	220	218	061	067	094	237	186	130	131	132	133
0	0	0	0	0	0	0	0	0	0	0	0	0	6	/	1)							•		-		0			e	
115	053	193	208	188	207	230	116	017	124	226	199	245	270	175		115	053	193	208	188	207	230	116	017	124	226	199	245	270	175
1	0		200	100			110	~ ~ ~ ~	0	0	1.00			\smile	Y .	200	232	217	203	219	113	204	195	054	224	246	213	205	201	198
0	0	. 🕑	8	8	0	0	3	0	(O)	(\mathbf{O})	8	0	0	0		101	0	090	126	020	022	268	229	185	032	117	081	022	0	206
200	232	217	203	219	113	204	195	054	224	246	213	205	201	198		101		.090	120	020	045	0		. 102	032		001	022	0	0
0	0	0	0	0	0	0	0	0	0	0	Q	0	0	0		082	182	178	240	187	214	099	071	180	231	118	223	239	228	024
101	211	090	126	020	023	268	229	185	032	117	081	022	179	206	Firmicut	0					0									
082	182	178	240	187	214	099	071	180	231	118	223	239	228	024		069	097	059	079	209	063	194	098	181	033	210	089	018	091	100
069	097	059	079	209	063	194	098	181	033	210	089	018	091	100		095	087	241	202	197	080	070	066	227	060	074	235	128	269	019
1	55			30		2.5			11.	33				3.0			0	0		0		0		0				0		0
095	087	241	202	197	080	070	066	227	060	074	235	128	269	019		096	083	065	125	021	184	078	114	196	092	177	238	075	233	244
096	083	065	125	021	184	078	114	196	092	177	238	075	233	244		(/	11							0	-	-				
0						0.	000	0				-					-	•	0	0	٠	0	0	()	O	0	0	0	0	
010		243	236	176	234	242	093	011	012	183	027	084	030	189		010	1/1/1	243	236	176	234	242	093	011	012	183	027	084	030	189
077	212	190	122	221	062	025	222	068	052	029	013	014	055	192	į	0		0	0	0	0	0		0	0	0	0	0	0	0
1	1				0	ò —	1	0	1		0		-			077	212	190	122	221	062	025	222	068	052	029	013	014	055	192
002	/138	0	152	140	136	157	145	134	15/	155	37	0 141	146	0			-		-		•		•			•	-		• 1	•
002	150	143	132	140	1994	131	Than ?		15/1	133				1	4	002	138	149	152	140	136	157	145	134	154	155	137	141	146	171
047	001	153	048	003	142	139	147	127	150	144	0	0	0	W	1	•	0) .			•	•	- 10			•	-	•	•	• 1
1		123			143	139	14/	127	156	144	151	150	142	135		047	001	153	048	003	143	139	147	127	156	144	151	150	142	135
0	0	(\bigcirc)	0	Θ		0	00e 000000	0		(O)	0	0	0	0		•			•	*		U		-						.
162		159	161	163	Constantion	006	008	007	271	990	167	165	160	166	1)	162	158	159	161	163		006	008	007	271	000	167	****	160	166
Bact	eroide	tes	Chlor	offexi	E	uryar	chaeo	na	Veri	ucom	icrob	la ri	propa	icteres		Bactero	ndetes	5	Chloro	flexi	EU	ryarc	haeot	a	Ve	rrucor	micro	bia Fi	broba	cteres


Microbial **changes in abundance** before (light) and after (dark) H_2 addition are represented as circles with areas proportional to **genome coverage**

Microbial upgrading populations

					Mesophilic		Thermophilic				
Phylum	Population genome	Таха	16S rRNA gene	Before H ₂	After H ₂	fold change	Before H ₂	After H ₂	fold change		
Bacteroidetes	DTU134	Rikenellaceae	A. shahii (86%)	38.8	156.6	4.04	1.0	0.5	2.24		
Bacteroidetes	DTU002	Bacteroidales	P. propionicigenes (85%)	84.0	70.8		2.0	0.4	4.40		
Firmicutes	DTU175	Thermoanaerobacteraceae	M. thermoacetica (87%)	34.3	98.4	2.87	0.1	0.3	5.47		
Bacteroidetes	DTU135	Bacteroidales	O. hongkongensis (86%)	27.0	19.3	1.40	1.8	0.2	9.38		
Bacteroidetes	DTU136	Bacteroidaceae	B. clarus (87%)	13.4	29.9	2.23	0.7	0.2	3.54		
Firmicutes	DTU220	Syntrophomonadaceae	nd	3.9	32.6	8.41	1.6	2.1	1.37		
Firmicutes	DTU224	Erysipelotrichaceae	nd	22.1	4.2	5.26	0.0	0.0	1.88		
Bacteroidetes	DTU137	Porphyromonadaceae	T. forsythia (83%)	3.8	20.1	5.34	0.0	0.0	1.15		
Acidobacteria	DTU170	Acidobacteriales	A. capsulatum (86%)	7.8	14.3	1.82	0.0	0.0	1.83		
Firmicutes	DTU230	Clostridiales	nd	9.5	11.6		0.1	0.5	7.30		
Firmicutes	DTU246	Clostridiales	nd	14.7	3.0	4.92	0.4	0.4	1.14		
Chloroflexi	DTU159	Chloroflexi	nd	10.6	3.9	2.74	0.2	0.1	3.71		
Firmicutes	DTU010	Syntrophomonadaceae	nd	6.8	3.1	2.20	286.2	461.8	1.61		
Bacteroidetes	DTU001	Alistipes	nd	0.3	0.1	4.13	158.2	19.5	8.10		
Firmicutes	DTU011	Thermoanaerobacteraceae	Th. toyohensis (86%)	0.9	1.3	1.49	68.1	96.0	1.41		
Euryarchaeota	DTU006 (Methanoculleus	M. marisnigri (87%)	0.2	0.3	1.92	40.4	50.8			
Firmicutes	DTU012	Syntrophomonadaceae	nd	0.0	0.0	1.89	24.9	34.1	1.37		
Firmicutes	DTU014	Clostridiales	D. carboxydivorans (85%)	0.0	0.0	1.05	17.3	31.2	1.81		
Firmicutes	DTU013	Clostridiaceae	nd	0.0	0.0	1.09	16.4	30.7	1.87		
Firmicutes	DTU183	Syntrophomonadaceae	nd	0.0	0.0	1.45	19.4	26.1	1.34		
Firmicutes	DTU176	Syntrophomonadaceae	nd	0.0	0.0	1.11	9.5	14.7	1.55		
Firmicutes	DTU029	Halothermothrix	nd	0.0	0.0	1.26	5.6	13.1	2.34		
Firmicutes	DTU021	Syntrophomonadaceae	nd	0.1	0.1	2.08	9.5	9.0			
Firmicutes	DTU030	Syntrophomonadaceae	nd	0.0	0.0	1.98	8.6	9.3			
Thermotogae	DTU111	Defluviitoga tunisiensis	D. tunisiensis (98%)	0.0	0.0	1.73	12.5	4.6	2.72		


Novel microbial species

Candidatus Methanoculleus thermohydrogenotrophicum

GENOME CHARCATERISTICS									
Genome size [bp]	2.15 Mbp								
GC content	59.20%								
Scaffold N50 [bp]	17,178								
Number of contigs	503								
Number of protein-encoding genes	2,297								
Total number of essential genes	32								
Estimated completeness % (CheckM)	92.70%								
Estimated contamination level % (CheckM)	2.30%								

Anaerobic digestion: the funnel concept

 Functional classification

- ✓ Generalist GBs
- ✓ Specialist GBs

Some microbes are **favored** by H₂ addition some other are **inhibited**, at all levels of the funnel, but in particular at the lower levels

Effect of H₂ on syntrophic bacteria

Tentative functional reconstruction of specific population genomes with different responses to H_2 exposure

		Meso	philic	Therm	ophilic						
Population genome	Таха	Before H ₂	After H ₂	Before H ₂	After H ₂	Propanoate metabolism			Fatty acid degradation	W-L pathway	Fdh
DTU232	Syntrophomonadaceae	9.30	0.37	0.01	0.00	15	24	28	10	8	1
DTU204	Syntrophomonadaceae	2.42	0.31	0.14	0.10	8	12	22	18	9	4
DTU223	Syntrophomonadaceae	1.26	1.12	1.52	0.76	2	4	18	0	8	3
DTU183	Syntrophomonadaceae	0.01	0.00	19.41	26.06	14	20	32	14	8	3
DTU077	Syntrophomonadaceae	0.01	0.01	0.45	7.39	4	14	23	14	10	4
DTU122	Syntrophomonadaceae	0.00	0.00	0.49	2.19	8	1	30	1	8	5
DTU063	Tepidanaerobacter	0.01	0.00	8.34	1.66	15	10	33	0	8	
DTU021	Syntrophomonadaceae	0.14	0.07	9.47	8.97	10	22	30	21	10	3
DTU236	Syntrophomonadaceae	0.01	0.06	1.17	1.83	18	24	29	5	10	2
DTU093	Syntrophomonadaceae	0.01	0.01	1.23	1.81	16	29	39	2	9	1
DTU245	Syntrophomonadaceae	4.65	8.77	0.00	0.01	20	17	32	9		
DTU190	Syntrophomonadaceae	0.11	0.06	0.46	2.26	24	45	34	25		8
DTU052	Syntrophomonadaceae	0.13	0.09	1.59	3.92	19	35	34	38		9

On average >92% completeness and < 4% contamination

Conclusions

- Biological biogas upgrading is a feasible biomethanation
 technology leading to more than 96% CH₄ content in the final gas
- Independently form the H₂ addition distinct microbial
 communities were shaped due to the operational temperature
- ✓ H₂ addition enriched the hydrogenotrophic methanogenic culture and promoted the formation of syntrophic interactions
- Novel methanogen species was identified and was proposed as
 Candidatus Methanoculleus thermohydrogenotrophicum
- Correlation between syntrophs response to H₂ addition and their metabolic pathways was established

Teamwork

Stefano Campanaro Senior Researcher Padova University Panagiotis Kougias Senior Researcher DTU-ENV Laura Treu PostDoc DTU-ENV

Irini Angelidaki Professor DTU-ENV

Università degli Studi di Padova

Department of Biology

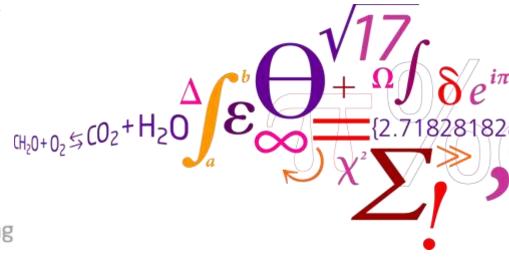
eBio

Ilaria Bassani PhD student

Panagiotis Tsapekos PostDoc

Xinyu Zhu PhD student

Thank you for your attention


InnovationsFonden

FORSKNING, TEKNOLOGI & VÆKST I DANMARK

SYMBIO – Integration of biomass and wind power for biogas enhancement and upgrading via hydrogen assisted anaerobic digestion -0603-00525B

ENERGINET

BioUpgrade– Ex-situ biogas upgrading through biologically mediated CO2 reduction, 12465

DTU Environment

Department of Environmental Engineering